Abstract
In the field of facial expression recognition, deep learning has attracted more and more researchers’ attention as a powerful tool. The method can effectively train and test data by using a neural network. This paper mainly uses the semi-supervised deep learning model for feature extraction and adds a regularized sparse representation model as a classifier. The combination of deep learning features and sparse representations fully exploits the advantages of deep learning in feature learning and the advantages of sparse representation in recognition. Experiments show that the features obtained by deep learning have certain subspace features, which accord with the subspace hypothesis of face recognition based on sparse representation. The method of this paper has a good recognition accuracy in facial expression recognition and has certain advantages in small sample problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.