Abstract
This paper was proposed a new algorithm for Facial Expression Recognition (FER) which was based on fusion of gabor texture features and Centre Binary Pattern (CBP). Firstly, gabor texture feature were extracted from every expression image. Five scales and eight orientations of gabor wavelet filters were used to extract gabor texture features. Then the CBP features were extracted from gabor feature images and adaboost algorithm was used to select final features from CBP feature images. Finally, we obtain expression recognition results on the final expression features by Sparse Representation-based Classification (SRC) method. The experiment results on Japanese Female Facial Expression (JAFFE) database demonstrated that the new algorithm had a much higher recognition rate than the traditional algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.