Abstract

Background and objectiveFacial expression recognition technology will play an increasingly important role in our daily life. Autonomous driving, virtual reality and all kinds of robots integrated into our life depend on the development of facial expression recognition technology. Many tasks in the field of computer vision are based on deep learning technology and convolutional neural network. The paper proposes an occluded expression recognition model based on the generated countermeasure network. The model is divided into two modules, namely, occluded face image restoration and face recognition. MethodsFirstly, this paper summarizes the research status of deep facial expression recognition methods in recent ten years and the development of related facial expression database. Then, the current facial expression recognition methods based on deep learning are divided into two categories: Static facial expression recognition and dynamic facial expression recognition. The two methodswill be introduced and summarized respectively. Aiming at the advanced deep expression recognition algorithms in the field, the performance of these algorithms on common expression databases is compared, and the strengths and weaknesses of these algorithms are analyzed in detail. Discussion and resultsAs the task of facial expression recognition is gradually transferred from the controlled laboratory environment to the challenging real-world environment, with the rapid development of deep learning technology, deep neural network can learn discriminative features, and is gradually applied to automatic facial expression recognition task. The current deep facial expression recognition system is committed to solve the following two problems: (1) Overfitting due to lack of sufficient training data; (2) In the real world environment, other variables that have nothing to do with expression bring interference problems. ConclusionFrom the perspective of algorithm, combining other expression models, such as facial action unit model and pleasure arousal dimension model, as well as other multimodal models, such as audio mode, 3D face depth information and human physiological information, can make expression recognition more practical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.