Abstract

Facial expression recognition plays an important role in the field involving human-computer interactions. Given the wide use of convolutional neural networks or other neural network models in automatic image classification systems, high-level features can be automatically learned by hierarchical neural networks. However, the training of CNNs requires large amounts of training data to permit adequate generalization. The traditional scale-invariant feature transform (SIFT) does not need large learning samples to obtain features. In this paper, we proposed a feature extraction method for use in the facial expressions recognition from a single image frame. The hybrid features use a combination of SIFT and deep learning features of different levels extracted from a CNN model. The combined features are adopted to classify expressions using support vector machines. The performance of proposed method is tested using the publicly available extended Cohn-Kanade (CK+) database. To evaluate the generalization ability of our method, several experiments are designed and carried out in a cross-database environment. Compared with the 76.57% accuracy obtained using SIFT-bag of features (BoF) features and the 92.87% accuracy obtained using CNN features, we achieve a FER accuracy of 94.82% using the proposed hybrid SIFT-CNN features. The results of additional cross-database experiments also demonstrate the considerable potential of combining shallow features with deep learning features, and these results are more promising than state-of-the-art models. Combining shallow and deep learning features is effective when the training data are not sufficient to obtain a deep model with considerable generalization ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call