Abstract

Facial attribute is important information for a variety of machine vision tasks including recognition, classification, and retrieval. There arises a strong need for detecting various facial attributes such as gender, age and more which consume more computation and storage resources. Therefore, we propose a compression framework to find fewer significant Latent Human Topics (LHT) to approximate more facial attributes. LHT is a combination of attribute correlation by transferring facial attribute space to compressional space with Singular Value Decomposition (SVD). Using the proposed scheme, we can easily detect the facial attributes from a face image via fast reconstructing the compressed labels automatically detected by a few LHT classifiers. Experimental results show that our system can achieve similar performance with substantially fewer dimensions compared to the original number of facial attributes, and it even shows slight improvements because LHT carry informative attribute correlations learned from data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.