Abstract

Human age estimation by face images is an interesting yet challenging research topic emerging in recent years. This paper extends our previous work on facial age estimation (a linear method named AGES). In order to match the nonlinear nature of the human aging progress, a new algorithm named KAGES is proposed based on a nonlinear subspace trained on the aging patterns, which are defined as sequences of individual face images sorted in time order. Both the training and test (age estimation) processes of KAGES rely on a probabilistic model of KPCA. In the experimental results, the performance of KAGES is not only better than all the compared algorithms, but also better than the human observers in age estimation. The results are sensitive to parameter choice however, and future research challenges are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call