Abstract

AbstractFacial action units (AUs) encode the activations of facial muscle groups, playing a crucial role in expression analysis and facial animation. However, current deep learning AU detection methods primarily focus on single‐image analysis, which limits the exploitation of rich temporal context for robust outcomes. Moreover, the scale of available datasets remains limited, leading models trained on these datasets to tend to suffer from overfitting issues. This paper proposes a novel AU detection method integrating spatial and temporal data with inter‐subject feature reassignment for accurate and robust AU predictions. Our method first extracts regional features from facial images. Then, to effectively capture both the temporal context and identity‐independent features, we introduce a temporal feature combination and feature reassignment (TC&FR) module, which transforms single‐image features into a cohesive temporal sequence and fuses features across multiple subjects. This transformation encourages the model to utilize identity‐independent features and temporal context, thus ensuring robust prediction outcomes. Experimental results demonstrate the enhancements brought by the proposed modules and the state‐of‐the‐art (SOTA) results achieved by our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.