Abstract

The solid–liquid interface of metallic systems of small entropy of fusion is characterized by a rough interface and dendritic morphology. In contrast, systems of high entropy of fusion like semimetals and semiconductors show smooth interfaces and facetted interfaces. The present work demonstrates that, in an undercooled melt of a metal–metalloid alloy Ni2B of intermediate entropy of fusion, a transition from a rough to a smooth interface is induced by forced convection of the melt. Electrostatic levitation is used to container-less undercool droplets in a quiescent state with no convection while electromagnetic levitation (EML) is used to undercool droplets with forced convection. The growth velocity of the solid phase is monitored as a function of undercooling by a high-speed video camera. The data are analysed within dendrite growth theory. In the case of EML, a transition from a rough to a smooth interface is indicated during dendrite growth in the undercooled melt. This is confirmed by facetted microstructures of samples solidified upon undercooling by EML. Hopper-like crystals are formed like in non-metals as bismuth, halite and ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call