Abstract
Faceting of grain boundaries (GBs) or surfaces can be considered as a phase transition when the original surface or GB dissociates onto flat segments whose energy is less than that of original surface or GB. Zn [1120] flat single crystals were grown using the modified Bridgman technique from Zn of 99.999 wt% purity. Individual elongated twin plates having very uniform thickness were produced with the aid of slight deformation of single crystals. Parallel elongated sides of the twin plate are formed by the coherent symmetric twin (1102)1‖(1102)2 grain boundary (STGB) facets. Due to its optical anisotropy, zinc allows one to study the shape of the GB with the aid of polarised light. The stationary shape of the slowly migrating tip of the twin plate has been studied in situ. The hot stage of optical microscope was used. The temperature interval from 592 to 692 K was investigated. Below 632 K the twin tip contains only one plane facet 1 which is nearly parallel to the (1102)2 plane and has the angle of 84° with the coherent STGB. Above 632 K the second facet 2 appears at the tip of the twin plate. This facet is nearly parallel to the (1100)1 plane and has the angle of 46° with the coherent STGB. Between 632 and 682 K both 84° and 46° facets coexist, and 84° facet gradually disappear with increasing temperature. Above 682 K only 46° facet is present in the twin tip. The indications of the GB roughening phase transition were also observed, namely the edges of the facets become smoother with increasing temperature. The GB phase diagram for the twin GBs in zinc containing the lines of two GB faceting phase transitions has been constructed. Schematic Wulff-Herring diagrams explaining these transitions are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.