Abstract
The question whether quasicrystal shapes should be faceted is studied in a simple model of quasicrystalline order. At T=0, the model is proved to yield a completely faceted equilibrium shape in both two and three dimensions. At T>0, an interface model is derived for a two-dimensional Penrose tiling. By mapping it onto a one-dimensional quasiperiodic Schr\"odinger equation, we show that the roughness exponent varies continuously with T at low T.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.