Abstract

Accurate prediction of the environmental fate of Pb depends on the understanding of Pb coordination to mineral surfaces. Here, the proton and Pb adsorption and speciation on hematite nanocrystals with different exposed crystallographic facets were investigated. High-resolution transmission electron microscopy images revealed that hematite nanoplates (HNP) were of 75.3 ± 9.5% (001) facets and 24.6 ± 9.3% (012) facets, while hematite nanocubes (HNC) were of 76.0 ± 11.1% (012) facets and 24.0 ± 3.2% (110) facets. Our modeling results revealed that the proton affinity constant (log KH) of ≡FeOH−0.5 and ≡Fe3O−0.5 was 7.8 and 10.8 on hematite (012) facets, and changed to 7.7 and 11.7 on (110) facets, respectively. Owing to the different atomic arrangements, (012) facets not only have higher adsorption performance for Pb, but also present a greater dependence on pH than (110) facets. Additionally, our modeling further indicated that (012) facets bind Pb via both bidentate and tridentate complexes, while (110) facets bind Pb only through bidentate complexes at pH 3.0–6.5. These results facilitate a more detailed understanding of the complex species of Pb on hematite surface while also provide new insight into the reactivity mechanism of individual hematite facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.