Abstract

Constructing highly active electrocatalysts towards hydrogen evolution reaction (HER) in both alkaline and acidic media is essential for achieving a sustainable energy economy. Here, a facile ethylene glycol reduction strategy was employed to design the nickel-ruthenium nanocrystals (Ni-Ru NC) with an exposed highly active Ru (101) facet as an efficient electrocatalyst for HER. Testings show Ni-Ru NC outperforms the benchmark catalyst Pt/C by delivering extraordinarily low overpotentials of 21.1 and 70.9 mV to drive 10 mA cm−2 in acidic and alkaline solutions, respectively. The results of experimental and theoretical studies suggest that Ni can modulate the electronic structure of the Ru NC and optimize the hydrogen adsorption free energy on Ru’s surface, which accelerates the charge transfer kinetics and enhances the HER performance. The study support the potential application of facet-modulated Ru-based HER eleccatalyst in an alkaline environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.