Abstract

Chromatic scheduling polytopes arise as solution sets of the bandwidth allocation problem in certain radio access networks supplying wireless access to voice/data communication networks to customers with individual communication demands. This bandwidth allocation problem is a special chromatic scheduling problem; both problems are N P -complete and, furthermore, there exist no polynomial-time algorithms with a fixed quality guarantee for them. As algorithms based on cutting planes are shown to be successful for many other combinatorial optimization problems, the goal is to apply such methods to the bandwidth allocation problem. For that, knowledge on the associated polytopes is required. The present paper contributes to this issue, introducing new classes of valid inequalities based on variations and extensions of the covering-clique inequalities presented in [J. Marenco, Chromatic scheduling polytopes coming from the bandwidth allocation problem in point-to-multipoint radio access systems, Ph.D. Thesis, Universidad de Buenos Aires, Argentina, 2005; J. Marenco, A. Wagler, Chromatic scheduling polytopes coming from the bandwidth allocation problem in point-to-multipoint radio access systems, Annals of Operations Research 150-1 (2007) 159–175]. We discuss conditions ensuring that these inequalities define facets of chromatic scheduling polytopes, and we show that the associated separation problems are N P -complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.