Abstract

Engineering exposed active facets by doping impurities can dramatically modify the morphology and physicochemical properties of nanocrystalline hematite. In the work described in this paper, through the combination of laser ablation in liquid and hydrothermal treatment techniques, faceted Mn-doped α-Fe2O3 nanocrystals (NCs) were prepared by adjusting the doping level of elemental Mn. With the increase of Mn doping level, the hematite crystal evolved sequentially from isotropic polyhedral nanoparticles (NPs) to {116}-faceted saucer-shaped nanosheets (NSs), and then to {001}-faceted hexagonal NSs. Electrochemical stripping tests revealed that the Mn-doped α-Fe2O3 NCs show a facet-dependent adsorption ability toward Pb(II), Cd(II), and Hg(II) heavy-metal ions; that is, {001}-faceted hexagonal NSs exhibit high and selective adsorption toward Pb2+ ions, while {116}-faceted saucer-shaped NSs present strong and selective adsorption toward Cd2+ and Hg2+ ions. Density functional theory (DFT) calculations found tha...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.