Abstract

Bismuth-rich bismuth oxyhalides (Bi-O-X; X = Cl, Br, I) display high photocatalytic reduction activity due to the promoting conduction band potential. In this work, two Bi5O7I nanosheets with different dominant facets were synthesized using either molecular precursor hydrolysis or calcination. Crystal structure characterizations, included X-ray diffraction patterns (XRD), field emission electron microscopy and fast Fourier transformation (FFT) images, showed that hydrolysis and calcination resulted in the dominant exposure of {100} and {001} facets, respectively. Photocatalytic data revealed that Bi5O7I-001 had a higher activity than Bi5O7I-100 for N2 fixation and dye degradation. Photoelectrochemical data revealed that Bi5O7I-001 had higher photoinduced carrier separation efficiency than Bi5O7I-100. The band structure analysis also used to explain the underlying photocatalytic mechanism based on the different conduction band position. This work presents the first report about the facet-dependent photocatalytic performance of bismuth-rich Bi-O-X photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.