Abstract

Facet-dependent on-surface reactions are systematically studied on zinc-blende CdSe nanoplatelets with atomically-flat {001} basal facets and small yet non-polar side facets. The on-surface half-reactions between the surface Se sites and Cd carboxylates in the solution are qualitatively equivalent to those on the spheroidal counterparts. Conversely, the on-surface half-reactions between the surface Cd sites and the activated Se precursors in solution show a strong facet-dependence, which includes three distinguishable stages. In the first stage, the Se precursors adsorb onto the small and non-polar side facets of the nanoplatelets. The second stage is initiated by the adsorbed Se precursors at the side-basal plane edges and proceeds from the edges to the center of the basal planes in quasi-zeroth-order kinetics. In the third stage, the nanoplatelets are dismantled, which includes the creation of a hole in the middle and a build-up of thick edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.