Abstract
Copper (Cu) has unique hydrogenation properties in the CO2 reduction reaction (CO2RR) for the synthesis of valuable hydrocarbons and alcohols such as methane, ethylene, ethanol and formic acid. Among the C1 products, formic acid (HCOOH) is chemically stable in the liquid phase at room temperature and is the simplest energy source that can be synthesized from CO2. The electrochemical CO2RR on Cu has been widely studied due to its very high selectivity toward target products and mild reaction conditions. However, electrochemistry activity can be impacted by many catalytic surface properties, including the morphology, crystallinity and surface index. Cu has a face-centered cubic (FCC) structure, and the Cu(1 1 1) surface index tends to be naturally exposed. Since the number of dangling bonds on the surface of the catalyst is different for each exposed surface, each surface activity is different, and the reaction pathway may also be different. The surface indexes of Cu(1 0 0) and (2 1 1) can be observed as a supported catalyst, and Cu(1 1 0) can be observed in a rod shape nanoparticle. Herein, we performed CO2RR over each surface and proposed an energy diagram of HCOOH formation via the COOH and HCOO intermediates using spin-polarized density functional theory. We elucidate the determining factor of catalytic activity and discuss the relationship between the coordination number/surface roughness (caused by the different surface facet) and the activity through electronic analysis of the d orbitals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.