Abstract

Ag3PO4 nanostructures (APNs) containing silver (Ag metal; of the noble metal families) have the potential to exhibit enzyme-mimetic activity. A nanostructure shape, including its surface facets, can improve the bioactivity of enzyme mimicry, yet the molecular mechanisms remain unclear. Herein, we report facet-dependent peroxidase and oxidase-like activity of APNs with both antibacterial and biofilm degrading properties through the generation of reactive oxygen species. Cubic APNs had superior antibacterial effects than rhombic dodecahedral shapes when inhibiting Gram-positive and Gram-negative bacterial pathogen proliferation and biofilm degradation. A similar performance was observed for rhombic dodecahedral shapes, being greater than tetrahedral-shaped APNs. The extent of enzyme-mimetic activity is attributed to the facets {100} present in cubic APNs that led the peroxide radicals to inhibit the proliferation of bacteria and degrade biofilm. These facets were compared to rhombic dodecahedral APNs {110} and tetrahedral APNs {111}, respectively, to reveal a facet-dependent enhanced antibacterial activity, providing a plausible mechanism for shape-dependent APNs material enzyme-mimetic effects on bacteria. Thus, our research findings can provide a direction to optimize bactericidal materials using APNs in clinically relevant applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.