Abstract

Au-Pd core-shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar-sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen-evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au-Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3-fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite-difference time-domain (FDTD) simulations show a stronger electric field enhancement on Au-Pd core-shell THH than those on other Pd-containing nanocrystals. Light-assisted nitro reduction by ammonia borane on Au-Pd THH was also demonstrated. Au-Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call