Abstract

To address the growing concerns regarding severe water pollution, effective and environmentally friendly adsorbents must be identified. In this study, we prepared hydroxyapatite (HAp, Ca10(PO4)6(OH)2) as an eco-friendly absorbent via simple precipitation and obtained rod- (r-HAp) and plate-shaped HAp (p-HAp). The approach to obtaining p-HAp involved a low pH titration rate, promoting growth along the c-axis due to the adsorption of OH- on the (110) facet. Conversely, r-HAp was obtained by maintaining a high concentration of OH- during the initial stage through rapid pH titration, leading to a stronger restrictive effect on the growth of positively charged a(b)-planes. p-HAp demonstrated superior adsorption capacity, removing Pb through dissolution and recrystallization, achieving an impressive 625 mg/g within a 60 min reaction time compared to r-HAp. Our findings afford insights into the Pb removal mechanisms of HAp with different morphologies and can aid in the development of water purification strategies against heavy metal contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call