Abstract

Star acquisition is one of the most time-consuming routines in star-tracker operation. In the star image, a star point spread function (PSF) represents a near-Gaussian distribution. The star extraction consists in finding the highest-intensity pixel among the PSFs, collecting the adjacent pixels, and then calculating the star centroids in the star image plane. The candidate highest-intensity pixels are the maximum extremum points of the underlying intensity function of a digital star image. To extract star from the star image, the cubic facet model is applied to fit the underlying intensity surface in star acquisition procedure. A new extraction approach, using surface-fitting methods to approximate locally the image intensity function, and then using the partial derivatives of the fitted surface to make decisions regarding the maximum extremum points, is proposed. A number of experiments are carried out on simulated star images. The experimental results demonstrate that the proposed method is efficient and robust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.