Abstract
In this paper it is shown that faces of the Hamiltonian cycle polytope (also called the symmetric traveling salesman polytope) formed by the edge union of two cycles for which the symmetric difference contains only alternating cycles without common points, have diameter at most two. As a consequence, a logarithmic upper bound for the diameter of the Hamiltonian cycle polytope and the perfect two-matching polytope are derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.