Abstract

The motivation for this paper comes from physical problems defined on bounded smooth domains Ω in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains Ω h and if there is some additional compactness result available, then the method may converge even if Ω h → Ω only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of well-centeredness, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed. For this value of the parameter, Sommerville tetrahedron is invariant with respect to reflection, i.e., 3D space is tiled by copies of a single tetrahedron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.