Abstract

Trigeminal nerve injury can result in neuropathic pain behavior and alterations in motor function, but it is unclear if such injury produces neuroplastic alterations in face sensorimotor cortex that could contribute to the alterations in motor function. Therefore, this study aimed to determine if trigeminal nerve injury in a rat neuropathic pain model induces neuroplastic changes in jaw and tongue motor representations in face sensorimotor cortex in association with facial nociceptive behavior. Right infraorbital nerve transection was performed in adult male Sprague-Dawley rats; sham-operated rats served as controls. Nociceptive behavior was assessed by testing facial mechanical sensitivity pre-operatively and post-operatively (1-28 days). Intracortical microstimulation was also applied post-operatively in a series of microelectrode penetrations to map jaw and tongue motor representations in the face sensorimotor cortex by analyzing anterior digastric and genioglossus electromyographic activities evoked by microstimulation at histologically verified sites in face primary somatosensory cortex (face-SI) as well as face primary motor cortex (face-MI). Compared to sham, infraorbital nerve injury induced a significant (2-way repeated-measures analysis of variance, P < 0.001) bilateral decrease in facial mechanical threshold that lasted up to 28 days post-operatively. Nerve injury also induced a significant bilateral decrease compared to sham (P < 0.05) in the number of anterior digastric and/or genioglossus sites in face-MI and in face-SI. These findings indicate that trigeminal nerve injury induces neuroplastic alterations in jaw and tongue motor representations in face sensorimotor cortex that are associated with facial nociceptive behavior and that may contribute to sensorimotor changes following trigeminal nerve injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call