Abstract

The face ring of a simplicial complex modulo m generic linear forms is shown to have finite local cohomology if and only if the link of every face of dimension m or more is nonsingular, i.e., has the homology of a wedge of spheres of the expected dimension. This is derived from an enumerative result for local cohomology of face rings modulo generic linear forms, as compared with local cohomology of the face ring itself. The enumerative result is generalized to squarefree modules. A concept of Cohen–Macaulay in codimension c is defined and characterized for arbitrary finitely generated modules and coherent sheaves. For the face ring of an r-dimensional complex Δ, it is equivalent to nonsingularity of Δ in dimension r − c; for a coherent sheaf on projective space, this condition is shown to be equivalent to the same condition on any single generic hyperplane section. The characterization of nonsingularity in dimension m via finite local cohomology thus generalizes from face rings to arbitrary graded modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.