Abstract

The three-dimensional approach in face identification technology had gained prominent significance as the state-of-the-art breakthrough due to its ability to address the currently developing issues of identification technology (illumination, deformation and pose variance). Consequently, this trend is also followed by rapid development of the three-dimensional face identification architectures in which some of them, namely Microsoft Kinect and Intel RealSense, have become somewhat today’s standard because of its popularity. However, these architectures may not be the most accessible to all due to its limited customisation nature being a commercial product. This research aims to propose an architecture as an alternative to the pre-existing ones which allows user to fully customise the RGB-D data by involving open source components, and serving as a less power demanding architecture. The architecture integrates Microsoft LifeCam and Structure Sensor as the input components and other open source libraries which are OpenCV and Point Cloud Library (PCL). The result shows that the proposed architecture can successfully perform the intended tasks such as extracting face RGB-D data and selecting out region of interest in the face area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.