Abstract
In this paper, we present a new method to change the illumination condition of a face image, with unknown face geometry and albedo information. This problem is particularly difficult when there is only one single image of the subject available and it was taken under a harsh lighting condition. Recent research demonstrates that the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace using spherical harmonic representation. However, the approximation error can be large under harsh lighting conditions thus making it difficult to recover albedo information. In order to address this problem, we propose a subregion based framework that uses a Markov Random Field to model the statistical distribution and spatial coherence of face texture, which makes our approach not only robust to harsh lighting conditions, but insensitive to partial occlusions as well. The performance of our framework is demonstrated through various experimental results, including the improvement to the face recognition rate under harsh lighting conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.