Abstract
Face recognition is a field of computer vision that use faces to identify or verify a person. Face recognition used for real time applications and become the most important biometric area. This paper present two methodologies for face recognition. First methodology is feature extraction and dimension reduction using Principal Component Analysis (PCA) technique and second methodology is classification process using the Back Propagation Neural Network (BPNN). The proposed technique has been tested using Face94 and Grimace databases. Ten individuals are chosen from each database to test the methodology. Image compression using Discrete Cosine Transform (DCT) is implemented on images in each database. Different number of testing and training images are used for performance evaluation. Increasing the number of training images will increase the recognition rate. This face recognition system is implemented using a MATLAB software package. The overall performance of PCA-BPNN is satisfactory and the recognition rate is 100%. General Terms Face Recognition, Computer Vision, Dimension Reduction, Image Compression, Discrete Cosine Transform, Neural Network, Principal Component Analysis, Back Propagation Neural Network
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.