Abstract

We proposed an effective face recognition method based on the discriminative locality preserving vectors method (DLPV). Using the analysis of eigenspectrum modeling of locality preserving projections, we selected the reliable face variation subspace of LPP to construct the locality preserving vectors to characterize the data set. The discriminative locality preserving vectors (DLPV) method is based on the discriminant analysis on the locality preserving vectors. Furthermore, the theoretical analysis showed that the DLPV is viewed as a generalized discriminative common vector, null space linear discriminant analysis and null space discriminant locality preserving projections, which gave the intuitive motivation of our method. Extensive experimental results obtained on four well-known face databases (ORL, Yale, Extended Yale B and CMU PIE) demonstrated the effectiveness of the proposed DLPV method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.