Abstract

Extracting holistic features from the whole face and extracting the local features from the sub-image have pros and cons depending on the conditions. In order to effectively utilize the strengths of various types of holistic features and local features while also complementing each weakness, we propose a method to construct a composite feature vector for face recognition based on discriminant analysis. We first extract the holistic features and the local features from the whole face image and various types of local images using the discriminant feature extraction method. Then, we measure the amount of discriminative information in the individual holistic features and local features and construct composite features with only discriminative features for face recognition. The composite features from the proposed method were compared with the holistic features, local features, and others prepared by hybrid methods through face recognition experiments for various types of face image databases. The proposed composite feature vector displayed better performance than the other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.