Abstract
Boosting is a general method for improving the accuracy of any given learning algorithm. In this paper, we have proposed the boosting method for face recognition (FR) that improves the linear discriminant analysis (LDA)-based technique. The improvement is achieved by incorporating the regularized LDA (R-LDA) technique into the boosting framework. R-LDA is based on a new regularized Fisher’s discriminant criterion, which is particularly robust against the small sample size problem compared to the traditional one used in LDA. The AdaBoost technique is utilized within this framework to generalize a set of simple FR subproblems and their corresponding LDA solutions and combines the results from the multiple, relatively weak, LDA solutions to form a strong solution. The comparative experimental result on FERET database demonstrates that the proposed boosting method achieves more accurate results over the individual algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.