Abstract
Face recognition is gaining enormous interest nowadays. However, the technical challenges to teach a computer to recognize faces have been very difficult. Many methods and approaches have been proposed in the literature. This paper presents a face recognition method based on the combined kernel principal component analysis (KPCA) and support vector machine (SVM) methods. First, the KPCA method is utilized to extract features from the input images. The SVM method is then applied to these extracted features to classify the input images. We compare the performance of this face recognition method to other commonly-used methods. Our experiments show that the combination of KPCA and SVM achieves a higher performance compared to the nearest neighbor classifier, support vector machine, and the combination of kernel principal component analysis and nearest neighbor classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.