Abstract
Deep learning has achieved a great success in face recognition (FR), however, little work has been done to apply deep learning for face photo-sketch recognition. This paper proposes an adaptive scale local binary pattern extraction method for optical face features. The extracted features are classified by Gaussian process. The most authoritative optical face test set LFW is used to train the trained model. Test, the test accuracy is 98.7%. Finally, the face features extracted by this method and the face features extracted from the convolutional neural network method are adapted to sketch faces through transfer learning, and the results of the adaptation are compared and analyzed. Finally, the paper tested the open-source sketch face data set CUHK Face Sketch database(CUFS) using the multimedia experiment of the Chinese University of Hong Kong. The test result was 97.4%. The result was compared with the test results of traditional sketch face recognition methods. It was found that the method recognized High efficiency, it is worth promoting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.