Abstract
Face recognition and name and gender identification are challenging processes, especially when identifying perpetrators and suspects or when used in authentication systems. Machine learning and computer vision technologies are used in many fields, including security, and play an important role in face recognition and gender detection, offering valuable information to officials to rectify a situation in less time. This study used a few machine learning methods in the Labelled Faces in the Wild (LFW) database to examine their facial recognition and gender detection capacities. The LFW dataset was used to train and evaluate the Scale Invariant Feature Transform (SIFT) feature extraction method along with the Support Vector Machine (SVM) classifier and the Local Binary Pattern Histogram (LBPH) method. The result comparison from the current and other studies showed that the proposed LBPH method had higher accuracy in face recognition, while its accuracy in gender detection was very close to the ones of other, relevant studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.