Abstract
In order to solve the problem of low recognition accuracy in recognition of 3D face images collected by traditional sensors, a face recognition algorithm for 3D point cloud collected by mixed image sensors is proposed. The algorithm first uses the 3D wheelbase to expand the face image edge. According to the 3D wheelbase, the noise of extended image is detected, and median filtering is used to eliminate the detected noise. Secondly, the priority of the boundary pixels to recognize the face image in the denoising image recognition process is determined, and the key parts such as the illuminance line are analyzed, so that the recognition of the 3D point cloud face image is completed. Experiments show that the proposed algorithm improves the recognition accuracy of 3D face images, which recognition time is lower than that of the traditional algorithm by about 4 times, and the recognition efficiency is high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.