Abstract

Illumination variation on images of faces is one of the most difficult problems in face recognition systems. The performance of a self-organizing map-based face recognition system is highly degraded when the illumination in test images differs from that of the training images. Illumination normalization is a way to solve this problem. Both global and local image enhancement methods are studied in this article. A local histogram equalization method strongly improves the recognition accuracy of the CMU-PIE face database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.