Abstract

A numerical characterization is given of the h -triangles of sequentially Cohen–Macaulay simplicial complexes. This result determines the number of faces of various dimensions and codimensions that are possible in such a complex, generalizing the classical Macaulay–Stanley theorem to the nonpure case. Moreover, we characterize the possible Betti tables of componentwise linear ideals. A key tool in our investigation is a bijection between shifted multicomplexes of degree ≤ d and shifted pure (d–1) -dimensional simplicial complexes

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.