Abstract

A reduced-order model of face mask aerodynamics and aerosol filtration is introduced. This model incorporates existing empirical data on filtration efficiency for different types of face masks, as well as the size distribution of exhaled aerosol particles. By considering realistic peripheral gap profiles, our model estimates both the extent of peripheral leakage and the fitted filtration efficiency of face masks in terms of outward protection. Simulations employing realistic peripheral gap profiles reveal that, for surgical masks, 80% or more of the total exhaled airflow could leak through the mask periphery, even when the average peripheral gap measures only 0.65 mm. However, the majority of exhaled aerosol particles do not follow the flow path through the peripheral gaps but, instead, impact directly on the mask fabric. As a result, these face masks can filter out approximately 70% of the exhaled particles despite the significant peripheral leakage. To validate our model, we compare its predictions with experimental data, and we find a reasonable agreement in estimating the outward protection provided by surgical masks. This validation underscores the reliability of our model in assessing the efficacy of surgical masks. Moreover, leveraging the insights gained from our model, we explore the impact of mask usage on the transmission of respiratory viruses within communities. By considering various scenarios, we can assess the potential reduction in viral spread achieved through widespread mask adoption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call