Abstract

Recognizing unfamiliar faces is more difficult than familiar face recognition, and this has been attributed to qualitative differences in the processing of familiar and unfamiliar faces. Familiar faces are assumed to be represented by view-independent codes, whereas unfamiliar face recognition depends mainly on view-dependent low-level pictorial representations. We employed an electrophysiological marker of visual face recognition processes in order to track the emergence of view-independence during the learning of previously unfamiliar faces. Two face images showing either the same or two different individuals in the same or two different views were presented in rapid succession, and participants had to perform an identity-matching task. On trials where both faces showed the same view, repeating the face of the same individual triggered an N250r component at occipito-temporal electrodes, reflecting the rapid activation of visual face memory. A reliable N250r component was also observed on view-change trials. Crucially, this view-independence emerged as a result of face learning. In the first half of the experiment, N250r components were present only on view-repetition trials but were absent on view-change trials, demonstrating that matching unfamiliar faces was initially based on strictly view-dependent codes. In the second half, the N250r was triggered not only on view-repetition trials but also on view-change trials, indicating that face recognition had now become more view-independent. This transition may be due to the acquisition of abstract structural codes of individual faces during face learning, but could also reflect the formation of associative links between sets of view-specific pictorial representations of individual faces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call