Abstract
Generative Neural Networks (GAN) aims to generate realistic and recognizable images, including portraits, cartoons and other modalities. Image generation has broad application prospects and important research value in the fields of public security and digital entertainment, and has become one of the current research hotspots. This article will introduce and apply an important image generation model called GAN, which stands for Generative Adversarial Network. Unlike recent image processing models such as Variational Autoencoders (VAE), The discriminative network evaluates potential candidates while the GAN generates candidates. As a result, the discriminative network distinguishes created and real candidates, while the generative network learns to map from a latent space to an interest data distribution. In this article, the GAN model and some of its extensions will be thoroughly applied and implemented based on the dataset of CelebA, and details will be discussed through the images and graphs generated by the model. Specific training methods for various models and optimization algorithms can be produced by the GAN framework. The experiment’s findings in this article will show how the framework’s potential may be quantified and qualitatively assessed using the samples that were produced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.