Abstract
Existing face hallucination methods assume that the face images are well-aligned. However, in practice, given a low-resolution face image, it is very difficult to perform precise alignment. As a result, the quality of the super-resolved image is degraded dramatically. In this paper, we propose a near frontal-view face hallucination method which is robust to face image mis-alignment. Based on the discriminative nature of sparse representation, we propose a global face sparse representation model that can reconstruct images with mis-alignment variations. We further propose an iterative method combining the global sparse representation and the local linear regression using the Expectation Maximization (EM) algorithm, in which the face hallucination is converted into a parameter estimation problem with incomplete data. Since the proposed algorithm is independent of the face similarity resulting from precise alignment, the proposed algorithm is robust to mis-alignment. In addition, the proposed iterative manner not only combines the merits of the global and local face hallucination, but also provides a convenient way to integrate different strategies to handle the mis-alignment problem. Experimental results show that the proposed method achieves better performance than existing methods, especially for mis-aligned face images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.