Abstract

paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. As continual research is being conducted in the area of computer vision, one of the most practical applications under vigorous development is in the construction of a robust real-time face detection system. Successfully constructing a real-time face detection system not only implies a system capable of analyzing video streams, but also naturally leads onto the solution to the problems of extremely constraint testing environments. Analyzing a video sequence is the current challenge since faces are constantly in dynamic motion, presenting many different possible rotational and illumination conditions. While solutions to the task of face detection have been presented, detection performances of many systems are heavily dependent upon a strictly constrained environment. The problem of detecting faces under gross variations remains largely uncovered. This paper gives a face detection system which uses an image based neural network to detect face images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.