Abstract
Bus driver distraction and cognitive load lead to higher accident risk. Driver distraction sources and complex physical and psychological effects must be recognized and analyzed in real-world driving conditions to reduce risk and enhance overall road safety. The implementation of a camera-based system utilizing computer vision for face recognition emerges as a highly viable and effective driver monitoring approach applicable in public transport. Reliable, accurate, and unnoticeable software solutions need to be developed to reach the appropriate robustness of the system. The reliability of data recording depends mainly on external factors, such as vibration, camera lens contamination, lighting conditions, and other optical performance degradations. The current study introduces Capsule Networks (CapsNets) for image processing and face detection tasks. The authors’ goal is to create a fast and accurate system compared to state-of-the-art Neural Network (NN) algorithms. Based on the seven tests completed, the authors’ solution outperformed the other networks in terms of performance degradation in six out of seven cases. The results show that the applied capsule-based solution performs well, and the degradation in efficiency is noticeably smaller than for the presented convolutional neural networks when adversarial attack methods are used. From an application standpoint, ensuring the security and effectiveness of an image-based driver monitoring system relies heavily on the mitigation of disruptive occurrences, commonly referred to as “image distractions,” which represent attacks on the neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.