Abstract

For FPI sensor demodulation systems to be used in actual engineering measurement, they must have high performance, low cost, stability, and scalability. Excellent performance, however, necessitates expensive equipment and advanced algorithms. This research provides a new absolute demodulation system for FPI sensors that is high-performance and cost-effective. The reflected light from the sensor was demultiplexed into distinct channels using an array waveguide grating (AWG), with the interference spectrum features change translated as the variation of the transmitted intensity in each AWG channel. This data was fed into an end-to-end neural network model, which was utilized to interrogate multiple interference peaks' absolute peak wavelengths simultaneously. This architecturally simple network model can achieve remarkable generalization capabilities without training large-scale datasets using an appropriate data augmentation strategy. Experiments show that in simultaneous multi-wavelength and cavity length interrogations, the proposed system has the precision of up to ± 14 pm and ± 0.07 µm, respectively. The interrogation resolution can theoretically reach the pm level benefit from the neural network method. Furthermore, the system's outstanding demodulation repeatability and suitability were demonstrated. The system is expected to provide a high-performance and cost-effective, reliable solution for practical engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.