Abstract
We use low-finesse Fabry–Perot cavities in series to generate frequency combs with a large mode spacing in a way that allows its application to a large optical bandwidth. The attenuation of laser modes closest to the pass bands of the cavity exceeds 70 dB for a filter ratio of m=20 relative to the resonant modes centered within the pass bands. We also identify the best cavity geometry to suppress spurious transmission of higher order transversal modes. Such a thinned out frequency comb can be used to calibrate traditional spectrographs for precision astronomy. In the time domain mode filtering generates a pulse train with a multiplied repetition rate. High-fidelity filtering, as described here, implies small variations of the pulse energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.