Abstract

Quantum-mechanical calculations of electron magneto-transport in ideal graphene nanoribbons are presented. In noninteracting theory, it is predicted that an ideal ribbon that is attached to wide leads should reveal Fabry-Perot conductance oscillations in magnetic field. In the theory with Coulomb interaction taken into account, the oscillation pattern should rather be determined by the Aharonov-Bohm interference effect. Both of these theories predict the formation of quasi-bound states, albeit of different structures, inside the ribbon because of strong electron scattering on the interfaces between the connecting ribbon and the leads. Conductance oscillations are a result of resonant backscattering via these quasi-bound states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.