Abstract

Traditional electromagnetic interference shielding windows that can simultaneously reflect microwaves and transmit visible light are usually fabricated by depositing one metal mesh layer on the surface of the window. However, such a structure always suffers from strong Fabry-Perot resonance (FPR), which leads to the decline of shielding effectiveness (SE). Here, we analyze the mechanism of FPR from a perspective of the equivalent circuit model and further report a facile approach to minimize the FPR by depositing another high-resistance mesh layer on the back side of the shielding window, which can greatly reduce reflected waves, ensuring that interference cannot be formed. Simulation results prove that FPR can be effectively eliminated by the proposed method, and experiments further show that for a shielding window made with Schott B270 glass plate, the SE can be enhanced by 6.3 dB (76.6% energy attenuation) at declining points, while transmittance is only reduced by 1.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.