Abstract

The finite element method (FEM) was used to investigate the optical–mechanical behavior of a Fabry–Perot Interferometer (FPI) composed of a capillary segment spliced between two sections of standard optical fiber. The developed FEM model was validated by comparing it with theory and with previously published experimental data. The model was then used to show that the absolute strain on the host substrate is usually smaller than the strain measurement obtained with the sensor. Finally, the FEM model was used to propose a cavity geometry that can be produced with repeatability and that yields the correct absolute strain experienced by the host substrate, without requiring previous strain calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.