Abstract

Stimulus-responsive polymer gel materials were studied and applied widely in many fields in recent years. However, the poor electrically conductive property and even with poor toughness largely limit their extensive applications in more expanded fields. Herein, we report a novel kind of self-oscillating gels poly(acrylamide-co-acrylic acid-co-Fe(phen)3)/reduced graphene oxide (poly(AM-co-AC-co-Fe(phen)3)/RGO) with excellent electrical conductivity, and compressive strength via an in-situ polymerization accompanied by an ultrasonic assisted method. The dispersed reduced graphene oxide (RGO) improved the conductive and mechanical properties of the prepared materials remarkably. The conductivity of gel reached to 16.88 S·m−1 with the content of 0.34 wt% RGO and the maximum fracture pressure was 4.1 MPa, which is as high as human cartilage. Besides, the prepared gels exhibited the self-oscillating behavior in the Belousov-Zhabotinsky (BZ) solution free of catalyst. Therefore, the prepared materials have potential applications as artificial cartilage and soft electron instrument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.