Abstract
Photonic integrated circuits (PIC) devices are impacted by fabrication tolerances and therefore, prior knowledge of such variations could improve the PIC fabrication process and overall yield. This paper presents a method for predicting the fabrication impacts on a telecommunication optical digital to analog converter (oDAC)-based pulse amplitude modulator level four (PAM-4) transmitter as a case study where the certainty of this passive device is subjected to random variation. Our findings allow us to estimate the production yield in a fabrication scenario using the symbol error rate (SER) benchmark and this contributes to the study of the viability of oDAC PAM-4 transmitters to replace conventional electrical digital to analog converter (eDAC) PAM-4 transmitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.